

PRAVARA INSTITUTE OF MEDICAL SCIENCES (DEEMED TO BE UNIVERSITY)

Loni, Tal. Rahata, Dist. Ahmednagar 413736 NAAC Re-accrediated with 'A' Grade

SYLLABUS

M.Sc. (Medical Biotechnology)
(Center for Biotechnology)
(Academic Council Meeting Dated 28th October 2021)

Syllabus

M. Sc. (Medical Biotechnology)

Sr. No.	Code	Name of the subject	Page No.
Semeste	r I		
1.	MBTT 101	Cell Biology	03
2.	MBTT 102	Molecular Biology	05
3.	MBTT 103	Human Biochemistry	07
4.	MBTT 104	Human Physiology	09
Semeste	r II		
5.	MBTT 201	Medical Microbiology	10
6.	MBTT 202	Immunology & Immunotechnology	13
7.	MBTT 203	Cell Culture (Animal& Plant)	15
8.	MBTT 204	Clinical Biochemistry	17
Semeste	r III		
9.	MBTT 301	Genetic Engineering	20
10.	MBTT 302	Molecular Diagnostics	22
11.	MBTT 303	Bioinformatics	24
12.	MBTT304	Research Methodology, IPR, Bioethics & Biosafety	26
Semeste	r IV		
13.	MBTT 401	Food & Industrial Biotechnology	28
14.	MBTT 402	Nanobiotechnology	30
15.		Any one of the Following electives	33
	MBTT 403A	- Clinical Research	
	MBTT 403A	- Regenerative Medicine	
16.	MBTD 404	Dissertation	36

SEMESTER I

CELL BIOLOGY (MBTT 101)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credit s (T+P)
MBTT101	Core	Cell Biology	4	0	4	60	4+2=6

Objective:

The objective of the course is to familiarize the students with the fundamentals of cell biology.

Outcome:

At the end of the course, the students will be familiar with cell science and cell-cell interaction. This would help him to take further courses in biotechnology in the subsequent semesters.

Sr. No.	Торіс	Detail of syllabus	Hrs.				
Unit I	Cell Structure	Introduction to Prokaryotes and eukaryotes	8				
		Prokaryotic cell structure					
		Eukaryotic cell structure					
Unit II	Cytoskeleton	Overview of the Major Functions of Cytoskeleton. Microtubules:	12				
		Structure and Composition.					
		MAPs: Functions- Role in Mitosis, Structural Support and					
		Cytoskeleton Intracellular Motility.					
		Motor Proteins: Kinesins, Dynein; MTOCs. Dynamic Properties					
		f Microtubules.					
		Microtubules in Cilia and Flagella.					
		Microfilaments: Structure, Composition, Assembly and					
		Disassembly.					
		Motor Protein: Myosin.					
		Muscle Contractility: Sliding Filament Model.					
		Actin Binding Proteins: Examples of NonMuscle Motility.					
		Intermediate Filaments: Structure and Composition; Assembly					
		and Disassembly; Types and Functions.					
Unit	Cell	Tissues with permanent cells: Renewal by simple duplication,	10				
III	Differentiation	Renewal by stem cells- epidermis, Renewal by pluripotent stem					
	and tissues	cells- blood cell formation					
	maintenance	Quiescent stem cells – skeletal muscle, Soft cells and tough matrix – growth turnover and repair in skeletal connective tissue					
Unit	Cell cycle &	Mitosis and meiosis, chromosomes- structure and organization,	14				
IV	Signaling	nucleosomes organization karyotypes and ideograms. Cytological,	14				
"	Signamig	genetical and evolutionary significance of Mitosis and Meiosis.					
		Molecular events and regulation of cell cycle in eukaryotes. Check					
		points, Cyclins and protein kinases, MPF (maturation promoting					
		factor).					
		Types of Cell signaling, Signaling molecules and their receptors,					
		functions, pathways of intracellular signal transduction					

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit V	Cell -Cell	Cell adhesion & cell junctions	6
	Communicatio	Cell -cell interaction & cell matrix interaction	
	n	Extracellular matrix	
Unit	Cancer Biology	Cellular and genetic basis of cancer, apoptosis, carcinogens,	10
VI		environmental and diet factors in cancer.	

The course would be taught through lectures, demonstrations and practical classes.

Books recommended:

Cell and Molecular Biology by De Robertis.

Molecular Biology of Cell by Bruce Alberts 2002.

The Cell by Cooper 2000

Cell Biology, Genetics, Molecular Biology, Evolution and

Ecology by P. S Verma and VK Agarwal. Publisher S. Chand and Comp. 2005

Cell Biology by Powar

Cell and Molecular Biology Garald Karp J. Wiley & Sons, NY

Harvey Lodish- Molecular Cell biology, 5th edition (2003), Freeman W. H. and company

Gerald Karp- Cell & molecular Biology 6th Edition 2010

Alberts- Essential Cell Biology 4th Edition 2014

PRACTICAL IN CELL BIOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Microscopes-Compound microscopes
- 2. Observation of prokaryotic and eukaryotic cells with the help of light micrographs
- 3. Arrest and observation of chromosomes after colchicine treatment in onion roots.
- 4. Different stages of Meiosis.
- 5. Cell fractionation
- 6. Buccal smear Identification of Barr Body
- 7. Isolation of Mitochondria/chloroplast
- 8. Counting of cells using Haemocytometer

REFERENCE: Becker WM Kleinsmit, LJ, Hardin J, and Bertoni GP, 2009. The World of the Cell, seventh edition. Pearson/Benjamin-Cummings, Boston, MA.

MOLECULAR BIOLOGY (MBTT 102)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 102	Core	Molecular Biology	4	0	4	60	4+2=6

Objective:

The objective of the course is to familiarize the student with the fundamentals concepts and technique in molecular biology and its use in the medical research.

Outcome:

At the end of the semester, it is expected that students understood the basic genetic mechanisms such as DNA and chromosomes, replication, DNA repair and recombination, gene expression and regulation, and how to apply molecular knowledge to solve a critical problem. It is expected that they will be more confident to develop independent research projects either for pursuing their higher education or for industrial applications.

Sr. No.	Topic	Detail of syllabus	Hrs				
Unit I	Introduction	History and scope of molecular biology- Discovery of DNA-evidence for DNA as the genetic material. The genomes of bacteria, viruses, plasmids, mitochondria and chloroplast	4				
Unit II	Structure and maintenance of genome	Structure of DNA, types and alternatives forms of DNA. Structure of RNA. Organisation of eukaryotic genome- components of eukaryotic chromatinchromatin and chromosome structure-DNA-supercoiling -linking number- satellite DNA					
Unit III	DNA Replication	Replication of DNA in prokaryotes-, Origin of replication, types of DNA polymerases, details of DNA synthesis process Eukaryotic DNA replication- multiple replicons, eukaryotic DNA polymerases, ARS in yeast, Origin Recognition Complex (ORC), regulation of replication	10				
Unit IV	DNA damage, repair and mutation	Different types of DNA damages Mutation, types of mutation, spontaneous and induced mutation, Detecting mutation Nucleotide excision repair, Base excision repair, mismatch repair, recombination, repair, SOS operon, Double strand break repair, transcription coupled repair	7				
Unit V	Recombinatio n	Homologous and site specific recombination, Models for homologous recombination Proteins involved in recombination: RecA, B, C, D, Ruv A, B, C Gene conversion	8				
Unit VI	Mobile DNA elements	General features of Transposable elements, Transposable elements in prokaryotes-IS element, Retroviruses Retrotransposons- Ty elements in yeasts, SINES and LINES	5				
Unit VII	Transcription	Transcription in Prokaryotes: RNA polymerase, sigma factor, Initiation, elongation, termination, Transcription in Eukaryotes: RNA polymerases, transcription of protein coding sequences by RNA polymerase-II, post-transcriptional modification, R NA splicing and RNA editing, CpG Island and Epigenetic - Overview	7				

Sr. No.	Topic	Detail of syllabus	Hrs
Unit VIII	Translation	Genetic code, Translation in Prokaryotes and eukaryotes, post translational process- protein translocation	7
Unit IX	Control of Gene Expression	Gene regulation in Prokaryotes, Operon model, Gene regulation in eukaryotes, gene activators, enhancers and silencers	5

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

- 1. Benjamin Lewin. (2010) Genes X, Jones and Bartelett Publishers Inc.
- 2. Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D. Watson (2004), Molecular Biology of the Cell, 4th Edition, Garland Publishing
- 3. Raff, Keith Roberts, Peter Walter, (2003) Essential Cell Biology, 2nd Edition, Garland Publishing
- 4. Watson James D., Tania Baker, Stephen P. Bell, Alexander Gann, Michael Levine, Richard Lodwick (2004) Molecular Biology of the Gene, 5th Edition, Pearson Education, Inc. and Dorling Kindersley Publishing, Inc.
- 5. Weaver R., (2007) Molecular Biology, 4th Edition, McGrew Hill Science.
- 6. Molecular Biology and Biotechnology, 3rd edition– J M Walker & E B Gingold, Panima publishing corporation, 1999.
- 7. Elliot, Biochemistry & Molecular Biology
- 8. Kleinsmith, L. J. & Kish, V.M. 1995. Principles of Cell and Molecular Biology. 2nd edn., McLaughlin, S., Trost, K., Mac Elree, E. (eds.)., Harper Collins Publishers, New York.

PRACTICAL IN MOLECULAR BIOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Isolation of Genomic DNA from Bacterial & Blood Samples
- 2. Quantitative analysis of DNA by UV Spectrophotometer
- 3. Qualitative analysis of DNA through Agarose Gel Electrophoresis
- 4. Total isolation of RNA from bacterial cells
- 5. Quantitative analysis of RNA by UV Spectrophotometer

REFERENCE:

J Sambrook & D. W. Russell (2001). Molecular cloning: a laboratory manual Vol 1,2 & 3, CSHL Press.

HUMAN BIOCHEMISTRY (MBTT 103)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT103	Core	Human Biochemistry	4	0	4	60	4+2=6

Objective:

The Objective of the course is to familiarize the students with the fundamental and advances in Human Biochemistry.

Outcome:

At the end of the course, the student will have sufficient scientific understanding of the subject & have good knowledge of various bimolecular, their factions & metabolism.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Chemical basis of life	Composition of living matter; Water- properties, pH, pKa, Buffers, Handerson-Hasselbach equations, ionization and hydrophobicity; Emergent properties of biomolecules in water; Water as a reactant.	5
Unit II	Proteins	Amino acids as building blocks of proteins and their classification,pI and pKa values, Primary, Secondary, Tertiary and Higher order structure of Proteins, Protein Sequencing, Ramchandran Plot, Conjugated proteins-Glycoproteins, Lipoproteins, Heamproteins.	10
Unit III	Enzymes	Enzyme classification, General principles of catalysis, Quantitation of enzyme activity and efficiency, Enzyme characterization and Michaelis-Menten kinetics, Enzyme inhibition and covalent modification, enzyme regulation, Jackob & Monod model, Ribozymes. Enzyme immobilization	10
Unit IV	Carbohydrates	Mono- Di- and Polysaccharides, Optical isomerism, Glycolysis, Gluconeogenesis, Pentose phosphate pathways, Citric acid cycle.	9
Unit V	Lipids	Classification of lipids & fatty acids and structural analysis of fatty acids, Glycerols, Waxes, Glycolipids, Phospholipids, Sphingolipids, Sterols, Lipoproteins, β-oxidation, Biosynthesis of Cholesterol & its significant, Fatty acids. Ketogenesis	9
Unit VI	Nucleic acids	Biosynthetic pathways of purines and pyrimidines, degradation pathways	8
Unit VII	Bioenergetics	Basic principles; Equilibria and concept of free energy; Group transfer, concept of Entropy, Enthalpy and free energy , Oxidation and Reduction reactions, Electron Transport Chain, Metabolic regulations including the role of hormones – Inhibitor, Michel theory	9

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

Harper's Illustrated Biochemistry

A text of biochemistry, - A.V.S.S. Rama Rao 9th ed. (UBS Publisher's and

Distributors Pvt. Ltd.)

Leninger: Principles of Biochemistry, 3nd Ed. - Nelson D. et al (Worth Publishers)

Biochemistry, 5th, - Ed. Breg, J.M. Tymoczko J.L. and Stryer L. (W.H. Freeman & Co.)

Lubert Stayer, (Latest) Biochemistry, II edition, W.H. Freeman and CO.NY

PRACTICALS IN BIOCHEMISTRY (4 Hrs. per Week)

LIST OF EXPERIMENT

- 1. Calibration of pH meter
- 2. Estimation of Proteins By Biuret Method
- 3. Estimation of Protein By Lowry Method
- 4. Estimation of Serum Albumin By BCG Method
- 5. Estimation of SGPT
- 6. Estimation of Serum Alkaline Phosphatase
- 7. Estimation of Serum Creatinine
- 8. Estimation of Urea Nitrogen
- 9. Estimation of Cholesterol By Zak's ferric Chloride Method
- 10. Estimation of Carbohydrates By Anthrone Method
- 11. Separation of Proteins by SDS-PAGE
- 12. Separation of serum protein by paper electrophoresis

HUMAN PHYSIOLOGY (MBTT 104)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 104	Core	Human Physiology	4	0	4	60	4+2=6

Objective:

The objective of the course is to study the physiological aspects of the human systems and its role in functioning of all the major organs of the body.

Outcome:

At the end of the course, the students will be able to understand the integral mechanism operatly in the human system among with regulation of each system.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Basic concepts	Introduction and background (homeostasis, control systems),	7
	and principles	Biophysics of blood flow, Regulation of respiration, Autoregulation of renal blood flow and the concept of clearance	
TI!I II	C		5
Unit II	Sensory Organs	Eye, Ear, Nose, Tongue and Skin: Functions & Disorders	5
Unit III	Digestive	Functions & Disorders, Pharynx, oesophagus, Stomach and	5
	system	Intestines, Liver & Pancreas, Peritoneum	
Unit IV	Circulation	Heart rate and the significance, Cardiac cycle, HR factors	8
	system	ECG- Machine, Recording, Abnormalities types Causative	
		Factors	
		Reporting & Interpretation.	
Unit V	Respiration	Respiration, Mechanism, Inspiration, Expiration Gas exchange	8
	system	mechanism Lung surfactant, compliance Lung volume and	
		capacity Respiratory Exercises, Artificial Respiration Basis &	
		Techniques	
Unit VI	Genito-Urinary	Kidney, Urethra, bladder, Urethra, Female Reproductive	7
	System	System,	
		Male Reproductive System	
Unit	Skeletal system	Mechanism of contraction, Difference between 3 types of	7
VII		muscles, Electro myography & mechanical recording of	
		muscle contraction, Locomotion, Diseases of muscles,	
TT *4	N.T.	Dystrophies,	_
Unit	Nervous	Nerve fibres, types ,functions, injuries, impulses & velocity	5
VIII	System		
Unit IX	Endocrine system	Hormones, Functions & Disorders	5
Unit X	Genetic testing	Genetic testing, Eugenics and Aging	3

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

Textbook of Medical Physiology by C. Guyton

Physiology by C. Chatterjee

Human Anatomy & Physiolgy by Tortora

Medical physiology by Chaudhary

Anatomy and histology by Ross and Wilson

Human Anatomy and Physiology by Creager

PRACTICAL IN HUMAN PHYSIOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Blood grouping
- 2. Haemoglobin estimation
- 3. Total WBC and RBC count
- 4. Erythrocyte sedimentation rate
- 5. Differential Counting of Blood
- 6. PVC count

SEMESTER II

MEDICAL MICROBIOLOGY (MBTT 201)

Course Code	Category	Course Name	L	Т	P	Total Hours	Credits (T+P)
MBTT 201	Core	Medical Microbiology	4	0	4	60	4+2=6

Objective:

The objective of the course is to familiarize the students with bacteria and viruses, their structures, metabolism, diseases caused by bacteria and viruses and their control.

Outcome:

After completion of this course students are expected to be able to.

- ➤ Demonstrate theory and practical skill in microscopy and their handling technique and staining procedure.
- ➤ Know various culture media and their application
- > Understand physical and chemical means of sterilization on
- ➤ Know various biochemical test to analysis, understand, basic concept of chemical reaction that occur in lining system.

Sr. No.	Торіс	Detail of syllabus	Hrs.
Unit I	Introduction to Microbiology	Scope and history of Microbiology. Classification and identification of microorganism.	6
Unit II	Characteristics	Cultivation of bacteria. Culture media, preservation methods of bacterial cultures and maintenance, growth kinetics	6
Unit III	Microorganism - Bacteria	Morphology & fine structure of Bacteria	8
Unit IV	Host-parasite relationship	The host-parasite relationship, Symbiotic associations, Characteristics of parasitism, Entry, exit and transmission. Normal flora, various sites of normal flora	8
Unit V	Bacteriology	Bacteria of medical importance, Gram Positive Cocci- Staphylococcus, Streptococcus, Gram Negative - Neissaria Gram Positive Bacilli- Bacillus anthraxis, Clostridium Gram Negative Bacilli- members of Pseudomonadaceae, Vibrio cholera, Other: Mycoplasma, Ricketasia,	10
Unit VI	Virology & Mycology	General properties of viruses, classification of viruses, Laboratory diagnosis of viral infections, viral cultivation, Roll of antiviral agent Structure and characteristics of fungi, differences between Bacteria and fungi, culture and laboratory diagnosis, Medical importance of fungi.	10
Unit VII	Epidemiologic al aspects	Control of infection and disease, hospital acquired infection, Prevention & control.	6
Unit VIII	The Clinical manifestation of infection infection	Respiratory tract infections, Urinary tract infections, Sexually transmitted diseases, Gastrointestinal tract infections, Meningitis	6

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

General Microbiology: Vol. I & 2 by Powar & Daginawala

Microbiology by Pelzer

Microbiology by Prescott

General Microbiology by Stanier

Instant notes in Microbiology by Nicklin

Medical Microbiology by Mims

Medical microbiology by C.P. Baweja

Medical microbiology by Ananthnarayanan

Parasitology by Chatterjee

Mycology by Jagdish chander

Diagnostic microbiology by Bailey & Scott

PRACTICAL IN MEDICAL MICROBIOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Preparation of culture media
- 2. Staining procedures
- 3. Negative staining
- 4. Gram Staining
- 5. Aseptic transfer techniques
- 6. Streak plate method
- 7. Spread plate method
- 8. Pour plate method
- Biochemical tests
- 10. IMViC test
- 11. Triple Sugar Iron test
- 12. Catbohydrate fermentation test
- 13. Isolation and identification of bacterial pathogen from clinical specimen
- 14. Urine sample
- 15. Pus sample
- 16. Blood sample/any other
- 17. Antibiotic sensitivity test (Disk diffusion method and well diffusion method)
- 18. Techniques for diagnosis of viral infections
- 19. HIV
- 20. Dengue
- 21. Techniques for diagnosis of parasitic infections
- 22. Malaria

IMMUNOLOGY & IMMUNOTECHNOLOGY (MBTT 202)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 202	Core	Immunology & Immunotechnology	4	0	2	60	4+2=6

Objective:

The objectives of this course are to learn about structural features of components of immune system as well as their function. The major emphasis of this course will be on development of immune system and mechanisms by which our body elicit the immune response. This will be imperative for students as it will help them to think like an immunologist and predict about nature of immune response that develops against bacterial, viral or parasitic infection, and prove it by designing new experiments.

Course Outcomes:

On completion of this course, students should be able to:

- Evaluate the usefulness of immunology in different pharmaceutical companies;
- Identify the proper research lab work- ing in the area of their own interests;
- Apply their knowledge and design immunological experiments to demonstrate innate, humoral or cytotoxic T lymphocyte responses and figure out the kind of immune responses in the setting of infection (viral or bacterial) by looking at cytokine profile.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Antigens, Immunoglobulins Structure and Function	Overview of Antigens, Basic and fine structure of immuneglobulin: light chains, heavy chains and sequences, Antigen determinants on Immunoglobulin: Isotopic, allotypic, Idiotypic, Immunoglobulin super family	8
Unit II	Generation of B cell and T cell responses	Brief introduction of Antibodies, Organization and expression of immunoglobulin genes, Antigen-Antibody interactions: Principles and Applications, Major Histocompatibility Complex Antigen Processing and Presentation T cell receptor, T cell maturation, activation, and differentiation B cell generation, activation, and differentiation	12
Unit III	Immune Effector Mechanisms	Cytokines, The Complement system, Cell mediated effector responses, Leukocyte migration and inflammation, Hypersensitive reaction	8
Unit IV	Immuno techniques	Strength of antigen and antibody, interactions: Antibody affinity, antibody avidity, Cross reactivity, Precipitation reactions, agglutination reactions (Immunodiffusion and Immunoelectrophoretic technique), Radioimmunoassay, Enzyme linked Immunosorbant./Assay(ELISA), Western Blotting, Immuno precipitation.	12
Unit V	The Immune System in Health and Disease	Immune response to infectious diseases, Vaccines, AIDS and other immunodeficiencies, Autoimmunity, Transplantation immunology Cancer and the immune system.	10

Sr. N	lo. Topic	Detail of syllabus	Hrs.
Un	it CMI and Imaging	CD nomenclature, Identification of immune Cells; Principle	10
V	I techniques	of Immunofluoresence Microscopy, Flurochromes; Staining	
		techniques for live cell imaging and fixed cells; Flow cytometry, Instrumentation, Applications; Cell Cytotoxicity	

The course would be taught through lectures, demonstrations and practical classes.

BOOKS RECOMMENDED:

- 1. Immunology Kuby et.al
- 2. Cellular Interactions and immunobiology BIOTOL series
- 3. Immunology Roitt et. al.
- 4. Immunobiology Janeway Travers et. al
- 5. Cellular and molecular Immunology Abbas A.K., Lichtman A.H. and Pober, J.S.
- 6. Immunobiology 3rd ed. Janeway Travers
- 7. Brostoff, J., Seaddin, J. K., Male, D., & Roitt, I. M. (2002). Clinical Immunology. London: Gower Medical Pub.
- 8. Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway's Immunobiology. New York: Garland Science.
- 9. Paul, W. E. (1993). Fundamental Immunology. New York: Raven Press.
- 10. Goding, J. W. (1986). Monoclonal Antibodies: Principles and Practice: Production and Application of Monoclonal Antibodies in Cell Biology, Biochemistry, and Immunology. London: Academic Press

PRACTICAL IN IMMUNOLOGY & IMMUNOTECHNOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Animal handling
- 2. Blood collection
- 3. Routes of drug administration
- 4. Dissection of mice lymphoid organ (spleen)
- Latex agglutination method
- 6. Determination of Phagocytic index
- 7. Clinical diagnostic immunoblotting/ SDS PAGE
- 8. ELISA
- 9. Immunoassay immuno diffusion method, rocket electrophoresis
- 10. ICT for malaria and HIV detection

CELL CULTURE (ANIMAL & PLANT) (MBTT 203)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 203	Major	Cell Culture (Animal & Plant)	4	0	4	48	4+2=6

Objective:

To improve theoretical & Practical fundamental of cell and tissue culture techniques in animals & plants. To provides to students with the ability to adopt basic cell culture procedure for various research requirements.

Outcome:

At the end of this course the student will able to understand how to initiate grow & harvest the eukaryotic cell & their uses. They will be also able to understand the applications of *in vitro* biology for clonal propagation.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Introduction to animal tissue culture	Historical background, The application of tissue culture(Stem Cells tissue engineering, industry and Research), Terminology, Stages in cell culture	8
Unit II	Introduction to plant tissue culture	History & development of PTC, nutrient medium, plant growth regulators: mode & mechanism of action Incubation system & maintenance of <i>in vitro</i> culture	
Unit III	Outline of the key techniques of animal cell culture	Setting up the laboratory, Culturing cells, Maintaining the culture, Quantification of cells in cell culture, Cloning and selecting cell lines, Hazards and safety in the cell culture laboratory	8
Unit VI	Animal cell culture media	General cell culture media design, Natural media, Synthetic media, Further considerations in media formulation, Nutritional components of media, The role of serum in cell culture, Choosing a medium for different cell type	8
Unit V	Cell Separation and Characterization of cell lines	Cell separation - Methods of Cell separation - Density, antibody based, FACS, MACS technology. Cell Characterization - Species identification, linkage of tissue markers. Cell Morphology - Microscope, Staining	8
Unit VI	Preservation of animal cell lines	Variation and instability in cell lines, Preservation of cell lines, Freezing of cells, Thawing of cells, Quantification of cell viability, Cell banks	8
Unit VII	Plant, Cell & organ culture	Growth & development of plant cell & tissue in vitro. Callus culture, cell suspension culture, organ culture, organogenesis & embryogenesis. Applications of plant tissue culture: mass propagation, synthetic seeds & disease elimination	

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit VIII	Large scale animal cell culture	Culture parameters, Scale up of anchorage-dependant cells, Culture vessels, Suspension culture, Perfusion techniques, bioreactors	8

The course would be taught through lectures, demonstrations and practical classes.

BOOKS RECOMMENDED

Cell and Tissue Culture: Lab Procedures in Biotechnology by Alan Doyle (ed) J. Bryan Griffith (ed)

"Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications" by R Ian Freshney

"Animal Cell Culture: A Practical Approach (Practical Approach Series)" by John Masters

"Animal Cell and Tissue Culture" by Mathur Shivangi

Basic Cell Culture 2nd Edition by JM Davis Oxford University Press.2002.

Plant biotechnology by B. D. Singh, Kalyani Publication

Plant Biotechnology by chawla H. S. Oxford & IBH

Plant tissue culture by Bhojwani & Razdan

PRACTICALS IN CELL CULTURE (ANIMAL & PLANT) (4 Hrs. per Week)

LIST OF EXPERIMENT

- 1. Layout of Animal Tissue Culture laboratory
- 2. Washing of glasswares
- 3. Sterilization of glasswares
- 4. Preparation of culture media
- 5. Thawing of Animal cell lines
- 6. Passaging of Animal cell lines
- 7. Cell quantification and Cell viability
- 8. Cryopreservation of cell cultures
- 9. Preparation of Plant tissue culture media
- 10. In vitro propagation through shoot tip and nodal culture
- 11. Production of synthetic seeds
- 12. Production of callus and culture
- 13. Transformation by Agrobacterium based vector systems and regulation

CLINICAL BIOCHEMISTRY (MBTT 204)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 204	Core	Clinical Biochemistry	4	0	4	60	4+2=6

Objective:

The objectives of this course are to build upon previous knowledge of biochemical pathways and immunology to develop an appreciation of applications of these knowledge in clinical diagnostics and treatment. The course shall make students aware about various disease diagnostic techniques, disease pathologies and clinical case studies within the context of each topic.

Outcomes:

Students should be able to:

- Understand applications of clinical biochemistry in diagnostics;
- Understand the molecular basis of various pathological conditions from the perspective of biochemical reactions.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Introduction to clinical biochemistry	Clinical specimen Considerations - Types of Samples, Sample Processing, Sample Variables, Chain of Custody; Infection control, composition and types of blood specimens, preservation, influence of nutrition, drugs, posture, etc. Choice and correct use of anticoagulants; Care of the specimens, identification, transport, storage, influence of temperature, freezing/thawing; Laboratory safety and regulations - Safety awareness, safety equipment, biological, chemical, fire and radiation safety; Method evaluation and quality management, Basic concepts, Reference interval study, Diagnostic efficiency, Method evaluation, Quality Control and quality management.	10
Unit II	Amino acids and protein biochemistry	Amino acids - Inborn errors of amino acids: Aminoacidopathies, Amino Acid Analysis, formation of homocystinuria, cystinuria and cystinosis, phenyl ketonuria and alkaptonuria, albinism, tyrosinemia. Plasma proteins - Prealbumin (Transthyretin), Albumin, Globulins; Total Protein abnormalities - Hypoproteinemia, Hyperproteinemia; Methods of analysis - Quantification of specific proteins, Serum protein electrophoresis, Immunochemical methods; Proteins in other body fluids - Urinary proteins and Cerebrospinal fluid proteins; Non-protein nitrogen compounds (Physiology, clinical application, methods and pathophysiology) - Urea, Uric acid, Creatine, Creatinine, Ammonia.	10
Unit III	Clinically important enzymes and	Enzymes of clinical significance - Creatine Kinase, Lactate Dehydrogenase, Aspartate Aminotransferase, Alanine Aminotransferase, Alkaline Phosphatase, Acid Phosphatase,	10

Sr. No.	Topic	Detail of syllabus	Hrs.
	related pathophysiology	Glutamyl transferase, Amylase, Lipase, Glucose-6-Phosphate Dehydrogenase, Drug-Metabolizing Enzymes, Tumour markers, Bone markers, Cardiac markers, liver markers, Inborn errors associated with carbohydrate metabolism; Inborn errors of metabolism - Glycogen storage diseases, Fructosuria, Fructose intolerance, Pentosuria, Galactosuria, Urine screening.	
Unit IV	Diagnosis and treatment of carbohydrate disorders	Blood glucose regulation (fasting/pp/random) -hormones influencing carbohydrate utilization, Insulin.	10
Unit V	Transport mechanism and associated disorders	Transport of plasma lipids, lipoprotein metabolism, lipid profile and diet, PUFA and dietary fiber, Diagnosis and conditions of lipid disorders – Arteriosclerosis, Hyperlipoproteinemia, Hypercholesterolemia, Hypertriglyceridemia, Combined Hyperlipoproteinemia, Apolipoprotein Methods.	10
Unit	Assessment of organ system function	Pituitary function test, adrenal function - Introduction to Hormones and Pituitary Function - hypophysiotropic or hypothalamic hormones; Anterior pituitary hormones; Liver function alterations during disease - Jaundice, Cirrhosis, Tumors, Drug- and Alcohol-Related Disorders Assessment of liver function/liver - Function tests: Bilirubin, Urobilinogen in Urine and Faeces, Enzymes, Tests Measuring Hepatic Synthetic Ability, Hepatitis. Cardiac Function - Cardiovascular Disease, Diagnosis of heart disease - Laboratory Diagnosis of Myocardial Infarction, Markers of Congestive Heart Failure. Renal Function - Glomerular Filtration, Tubular Function, Elimination of Nonprotein Nitrogen Compounds, Water, Electrolyte, and Acid-Base Homeostasis, Endocrine Function, 1,25-Dihydroxy Vitamin D3, Clearance Measurements, 2-Microglobulin, Myoglobin, Microalbumin, Urinalysis, Pathophysiology - Glomerular Diseases, Tubular Diseases, Urinary Tract Infection/Obstruction, Renal Calculi, Renal Failure. Pancreatic Function and Gastrointestinal Function - Physiology of pancreatic function, Diseases of the pancreas, Tests of pancreatic function - Secretin/Cholecystokinin Test, Tubeless gastric function test, Tests of intestinal function - Lactose intolerance Test.	10

The course would be taught through lectures, demonstrations and practical classes.

BOOKS RECOMMENDED

Recommended Textbooks and References:

- 1. Michael L. Bishop, Edward P. Fody and Larry E. Schoeff; (2013). Basic Principles and Practice of Clinical Chemistry, (7th Ed). Lippincott Williams and Wilkins.
- 2. Stryer, L. (2002). Biochemistry, (8th Ed). Freeman.
- 3. D.M. Vasudevan and Sreekumari, S, (2010). Textbook of Biochemistry for Medical Students, (6th Ed). Jaypee Brothers Medical Publishers, New Delhi.
- 4. Sucheta Dandekar; (2010). Concise Medical Biochemistry, (3rd ed), Elsevier Health.
- 5. Satyanarayana and Chakrapani, (2013), Biochemistry; (4th Ed). Elsevier.
- 6. Clinical Biochemistry- Metabolic & Clinical aspects by William J. Marshall et al.– 3rd Edition Churchill Lirigstone- Elsevier
- 7. Textbook of Clinical Biotechnology- Ramnik Sood, CBS publications
- 8. Clinical Biotechnology- Lecture notes by Walker et al, 9th edition, Wiley Blackwell
- 9. Clinical Biotechnology-Ahmed, Oxford
- 10. Clinical Chemistry-Principles, Techniques & Correlation M.L. Bishop, Edward P. Fody, Larry E. Schoeff- 8th edition- Wolter Kluwer.
- 11. Testz fundamental of Clinical Chemistry and Molecular Diagnostics by Carl A. Burtis & David E. Bruns, 7th edition, Elsevier publication.

PRACTICALS IN CLINICAL BIOCHEMISTRY (4 Hrs. per Week)

- 1. Estimation of protein by Lowry method.
- 2. Estimation of blood glucose by Ortho-Toluidiene method.
- 3. Estimation of total protein and A: G ratio.
- 4. Estimation of blood urea by diacetyl monoxime method.
- 5. Estimation of serum creatinine by Jaffe's method.
- 6. Estimation of serum uric acid by phosphotungstate method.
- 7. Estimation of serum triglycerides
- 8. Qualitative Analysis of Urine for the presence of normal and abnormal constituents.

SEMESTER III

GENETIC ENGINEERING (MBTT 301)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 301	Core	Genetic Engineering	4	0	4	60	4+2=6

Objective:

To familiarize the student with emerging field of biotechnology i.e. Recombinant DNA Technology as well as to create understanding and expertise in wet lab techniques related to genetic engineering.

Outcome:

At the end of the course, the students will have sufficient scientific understanding of the subject and have good knowledge of application of Recombinant DNA techniques in Life Sciences Research.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Recombinant DNA technology- Introduction and Tools	The recombinant DNA concept, Milestones in genetic engineering, Tools of Genetic Engineering; Enzymes, Nuclease, The Restriction Endonucleases, Phosphodiesterase, Polynucleotide kinase, DNA ligase, DNA polymerase I, Reverse transcriptase, Terminal deoxynucleotidyl transferase, Poly A polymerase	10
Unit II	Vector System	Salient features of cloning vector, types of cloning vectors- plasmids, cosmids, phages (lambda and M13 phages), animal (SV40, Baculo) and plant (CMV) viruses, Artificial chromosomes- YACs and MACs	10
Unit III	The Means: Constructing, Cloning, and Selecting	Ligation of foreign DNA to vectors - cohesive and blunt end methods - homopolymer tailing and adaptors, Techniques of gene transfer - transformation, transfection, micro injection, electroporation, lipofection and biolistics, Screening Cloned Populations of Recombinants, Preparation of gene libraries and c-DNA libraries	14
Unit IV	Molecular Mapping of genome	DNA synthesis methods-Chemical and enzymatic. DNA sequencing techniques-Maxam & Gilbert method, Sangers dideoxy chain termination method, Automated DNA sequencing. Genetic and physical mapping techniques. PCR, molecular markers in genome analysis- RFLP, RAPD & AFLP analysis, molecular markers PCR based. MicroRNAs and RNA Interference.	14
Unit V	Applications of Genetic Engineering	Genetic diseases- Detection and Diagnosis, Gene therapy – <i>ex vivo</i> , <i>in vivo</i> , DNA marker technology in plants, DNA fingerprinting, Genetically engineered biotherapeutics and vaccines and their manufacturing, Transgenic animals and Bio-pharming	12

The course would be taught through lectures, demonstrations and practical classes.

BOOKS RECOMMENDED:

Molecular Biology of the gene - J. Watson

Genes VI, VII and VIII - Benjamin Lewin

Molecular Biotechnology Principles and application of recombinant DNA

Molecular Biology - Robert F. Weaver

Plant Molecular Biology: A practical approach. - C.H. Shaw (2006), Panima Pub. Corp.

Molecular cloning Vol. 1-3. Sambrook and Russel. 2001. CSH press.

Principles of gene manipulation. 1994. Old and Primrose, Blackwell Scientific Publ.

Principles and techniques of biochemistry and molecular biology, 6th Ed. Wilson Keith and Walker John (2005) Cambridge University Press, New York.

DNA Cloning: A practical approach D.M. Glover and D.B. Hames, R.L. Press,Oxford, 1995

Molecular and cellular methods in Biology and Medicine, P.B. Kaufman, W. Wu, D. Kim and L.J. Cseke, CRC Press Florida 1995

PRACTICALS: IN GENETIC ENGINEERING (4 hrs per week)

List of Experiments:

- 1. Competent Cell Preparation
- 2. Transformation *E.coli*.
- 3. Isolation of plasmid DNA by alkaline lysis mini preparation
- 4. Gel Elusion
- 5. Restriction digestion of vector DNA
- 6. Random Fragment Length Polymorphism
- 7. Random Amplified Polymorphic DNA
- 8. Southern hybridization
- 9. DNA amplification by PCR and analysis by Agarose gel electrophoresis
- 10. Manual DNA sequencing (Demo)

MOLECULAR DIAGNOSTICS (MBTT 302)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 302	Specialized	Molecular Diagnostics	4	0	4	60	4+2=6

OBJECTIVE:

The objective of the course is make aware students about the various medical diagnostic techniques and their use in diagnosing various disorders in humans.

The objectives of this course are to sensitize students about recent advances in molecular biology and various facets of molecular medicine

OUTCOME:

Students should be able to understand various facts of molecular procedures and basics of genomics, proteomics and metabolomics that could be employed in early diagnosis and prognosis of human diseases.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Introduction and History of diagnostics	Diseases- infectious, physiological and metabolic errors, genetic basis of diseases, inherited diseases. Infection – mode of transmission in infections, factors predisposing to microbial pathogenicity, types of infectious diseases- bacterial, viral, fungal, protozoans and other parasites. Philosophy and general approach to clinical specimens.	12
Unit II	Metabolic disorders and its causes	Traditional methods for the diagnosis of metabolic errors. Disease due to genetic disorders - Identifying human disease genes. Cancer- different types of cancers, genetics of cancer- Oncogenes, tumour suppressor genes. Methods available for the diagnosis of genetic diseases and metabolic disorders. Genetic disorders- Sickle cell anaemia, Retinoblastoma, Cystic Fibrosis and Sex - linked inherited disorders.	11
Unit III	Immunodiagnosti cs	Diagnosis of infectious diseases, respiratory diseases (influenza, etc.)Viral diseases-HIV etc., bacterial diseases, enteric diseases, parasitic diseases and mycobacterium diseases.	08
Unit IV	Molecular Diagnosis	Nucleic acid amplification methods and types of PCR: Reverse Transcriptase-PCR, Real-Time PCR, Inverse PCR, Multiplex PCR, Nested PCR, Alu-PCR, Hot-start, In situ PCR, Long-PCR, PCR-ELISA, Arbitrarily primed PCR, Ligase Chain Reaction. Proteins and Amino acids, Qualitative and quantitative techniques: Protein stability, denaturation; amino acid sequence analysis	12
Unit V	Hybridization technique, DNA sequencing and Radiation in diagnostics	Southern, Northern, in-situ (including FISH), microarrays – types and applications; Protein extraction and analysis (including PAGE and its variations); Western Blot, Automated DNA sequencing, Advances in DNA sequencing- New Generation sequencing Methods, Pyrosequencing, Microarrays, basic principles of X-Rays in diagnostics, MRI, CT-scan, radio isotopes in disease and diagnostics.	12

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit VI	Molecular Oncology	Detection of recognized genetic aberrations in clinical samples from cancer patients; types of cancer-causing alterations revealed by next-generation sequencing of clinical isolates; predictive biomarkers for personalized onco-therapy of human diseases such as chronic myeloid leukemia, colon, and melanoma as well as matching targeted therapies with patients.	05

The course would be taught through lectures and tutorials.

BOOKS RECOMMENDED:

- 1. Campbell, M.A and Heyer L.J., Discovering Genomics, Proteomics and Bioinformatics, 2nd Edition, CSHL Press, Pearson/Benzamin Cummings San Francisco, USA, 2007.
- 2. Andrew Read and Dian Donnai, New Clinical Genetics, Scion Publishing Ltd, Oxfordshire, UK, 2007.
- 3. James W Goding, Monoclonal antibodies: Principles and Practice, 3rd Edition, Academic Press, 1996.
- 4. George Patrinos and Wilhelm Ansorage, Molecular Diagnostics, 1st Edition, Academic Press, 2005.
- Lela Buchingham and Maribeth L Flawsm, Molecular Diagnostics: Fundamentals, Methods and Clinical Applications, 1st Edition, F A Davis Company, Philadelphia, USA, 2007.
- 6. Medical Microbiology, Edited by Greenwood, D, Slack, R and Peutherer, J, ELST Publishers.
- 7. Parasitology, Chatterjee K.D, Chatterjee Medical Publishers.
- 8. Bailey & Scott's Diagnostic Microbiology, Betty A. Forbes , Daniel F. Sahm, Alice S. Weissfeld , Ernest A. Trevino, Published by C.V. Mosby
- 9. Jawetz, Melnick, & Adelberg's Medical Microbiology, Geo F. Brooks, Stephen A. Morse, Janet S. Butel.
- 10. Fundamentals of Molecular Diagnostics. David E. Bruns, Edward R. Ashwood, Carl A. Burtis. Saunders Group.
- 11. Henry's Clinical Diagnosis And Management By Laboratory Methods Mcpherson

PRACTICALS IN MOLECULAR DIAGNOSTICS (4 Hrs. per Week)

- 1. Isolation of genomic DNA from peripheral blood.
- 2. Agarose gel electrophoresis
- 3. Determinations of DNA Quality & Concentration by spectrophotometry
- 4. Polymerase chain reaction (PCR)
- 5. RFLP/RAPD
- 6. Automated DNA Sequencing/Nextgen Sequencing
- 7. SDS-PAGE and Western blotting
- 8. RNA isolation
- 9. cDNA Synthesis
- 10. Molecular diagnosis of Human Immunodeficiency virus (HIV) by Western Blotting

BIOINFORMATICS (MBTT 303)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 303	Core	Bioinformatics	4	0	4	60	4+2=6

Objective:

The objective of the course is to enlighten the student with basic concepts and technique in Bioinformatics and its use in the field of Medical and health care.

Outcome:

- ➤ Knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics.
- > Existing software effectively to extract information from large databases and to use this information in computer modeling.
- An understanding of the intersection of life and information sciences, the core of shared concepts, language and skills the ability to speak the language of structure-function relationships, information theory, gene expression, and database queries.

Sr. No.	Торіс	Detail of syllabus	Hrs.
Unit I	Biology in the	How Is Computing Changing Biology?	10
	computer age: An	Isn't Bioinformatics Just About Building Databases?	
	Introduction to	What Does Informatics Mean to Biologists??	
	Bioinformatics	How Do I Understand Sequence Alignment Data?	
		What Challenges Does Biology Offer Computer Scientists?	
		What Skills Should a Bioinformatician Have?	
		Why Should Biologists Use Computers?	
		How Can I Configure a PC to Do Bioinformatics Research?	
		What Information and Software Are Available?	
		Can I Learn a Programming Language Without Classes?	
		How Can I Use Web Information	
		How Do I Understand Sequence Alignment Data?	
		How Do I Write a Program to Align Two Biological	
		Sequences?	
		How Do I Predict Protein Structure from Sequence?	
		What Questions Can Bioinformatics Answer?	
Unit II	Computational	Introduction, Computational Methods in Bioinformatics	10
	approaches to	What Biologists Model, Accessing 3D Molecules through a	
	biological	1D Representation, Abstractions for Modeling Protein	
	questions.	Structure.	
		Mathematical Modeling of Biochemical Systems. Why	
		Biologists Model	
Unit III	Biological research	Introduction, Using Search Engines, Boolean Searching,	10
	on the web	Search Engine Algorithms, Finding Scientific Articles, Using	
		PubMed Effectively, The Public Biological Databases, Data	
		Annotation and Data Formats, 3D Molecular Structure Data,	
		DNA, RNA, and Protein Sequence Data, Genomic Data,	
		Biochemical Pathway Data	

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit IV	Sequence analysis, pairwise alignment, and database searching	Introduction, Genefinders and Feature Detection in DNA, Predicting Gene Locations, Feature Detection, Pairwise Sequence Comparison, Scoring Matrices, Gap Penalties, Global Alignment, Local Alignment, Tools for local alignment, Sequence Queries against Biological Databases, Local Alignment-Based Searching Using BLAST, The BLAST algorithm	10
Unit V	Multiple sequence alignments, trees and profiles	Introduction, Taxonomy and Evolution, Concept of molecular evolution, Terms: Orthologs, paralogs and xenologs. Multiple sequence alignment: MSA by Clustal-W, Application of MSA Phylogenetic inferences, Phylogenetic trees based on neighbor joining, Software for phylogenetic analysis, Profiles and motifs:General concepts FASTA	10
Unit VI	Tools for genomics and proteomics	Introduction, From Sequencing Genes to Sequencing Genomes, Analysis of Raw Sequence Data: Basecalling Sequencing an Entire Genome, The shotgun approach, The clone contig approach, NCBI Genome Resources, TIGR Genome Resources, EnsEMBL, Other Sequencing Centers, Annotating and Analyzing Whole Genome Sequences, Genome Annotation Functional Genomics: New Data Analysis Challenges, Sequence-Based Approaches for Analyzing Gene Expression Proteomics, Tools for Proteomics Analysis	10

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

Developing Bioinformatics computer skills – Gibas C and Jambeck P Introduction to bioinformatics – T.K. Attwood and Parry-Smith D.J.

Introduction to Bioinformatics: Lesk, A.M. Oxford University press.

Developing Bioinformatics Computer Skill: Cynthia Gibbs and Per Jambeck. O'Reilly & Associates.

PRACTICAL IN BIOINFORMATICS (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Introduction to SPDBV (deep view).
- 2. Basic exercise in protein structure visualization.
- 3. Basic exercise in protein structure visualization coloring.
- 4. To study the PubMed using internet.
- 5. To study the NCBI website using internet
- 6. BLAST
- 7. FASTA

RESEARCH METHODLOGY, INTELLECTUAL PROPERTY RIGHTS, BIOETHICS & BIOSAFETY (MBTT 304)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 304	Core	Research Methodology, Intellectual Property Rights, Bioethics & Biosafety	4	0	0	60	4+0=4

Objective:

To provide fundamental theoretical knowledge to the students about patent, copyrights & IPR protection acts.

To provide knowledge in Bioethics and aware them the legal, safety and public policy issues raised due to the progress in Biotechnology.

Outcome: On completion of this course, students should be able to:

- Understand the rationale for and against IPR and especially patents;
- Understand why India has adopted National IPR Policy and be familiar with broad outline of patent regulations;
- Understand different types of intellectual property rights in general and protection of products derived from biotechnology research and issues related to application and obtaining patents;
- Gain knowledge of biosafety and risk assessment of products derived from recombinant DNA research environment release of genetically modified organisms, national and international regulations;
- Understand ethical aspects related to biological, biomedical, health care and biotechnology research.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Introduction	Definition- Objectives- Types- Significance of Research- Steps in research process- Criteria for good research. Defining and formulating a research problem- Literature survey-	10
		Development of working hypothesis.	
Unit II	Intellectual Property Rights	Introduction to IPR, IPR in India, IPR in abroad, Types of IPR-Patent, Copyright, Trademark, Design & Trade Secret Biotechnology & IPR- Commercial potential of biotechnology inventions; Patenting Biotechnological Inventions- Objective, Concept of novelty, Concept of inventive step, Microorganism, Moral issues in patenting biotechnological inventions.	10
Unit III	IPR : Protection	Plant Varieties Protections- Objective, Justification, International position, Plant Variety Protection in India. Protection of geographical indication- Objective, Justification, International position, Multilateral Treaties, National level, Indian positions Protection of traditional knowledge- Objective, Concept of traditional knowledge, Bioprospecting & Biopiracy, Protectability.	10

Sr. No.	Topic	Detail of syllabus	Hrs.		
Unit	Bioethics	Bioethics- History & Introduction; Social, Legal & Ethical Issues	10		
IV		in biotechnology, ethical concerns of biotechnology research,			
		Bioethics Committees			
		Animal ethics- Norms in India-Licensing of animal house-			
		Ethical clearance norms for conducting studies on human			
		subjects, IAEC			
Unit V	Bio-safety	Introduction a& development of Bio-safety; Practices &	20		
		Principles; General lab equipments; Definitions & Bio-safety			
		levels, 1, 2, 3, 4,; Biological safety cabinets, centrifuge; Shipment			
		of biological specimens; Biological waste management;			
		Decontaminations, Bio-safety manuals; Medical surveillance,			
		Emergency response.			

The course would be taught through lectures, demonstrations and practical classes.

Books Recommended:

- 1. T. M. Murray & M. J. Mehlman, Encyclopedia of ethical, legal and policy issues in biotechnology, John Wiley & sons 2000.
- 2. Ethical Issues in Biotechnology by Richard Sherlock & John D. Morrey, Rowman & Littlefield Publishers
- 3. Singh K. Intellectual Property Rights on Biotechnology, BCIL, and Newdelhi-1993.
- 4. Shaleesha A. Stanley, Bioethics, Wisdom educational service-2010.
- 5. Ganguli, P. (2001). Intellectual Property Rights: Unleashing the Knowledge Economy. New Delhi: Tata McGraw-Hill Pub.
- 6. Recombinant DNA Safety Guidelines, 1990 Department of Biotechnology, Ministry of Science and Technology, Govt. of India. Retrieved from http://www.envfor.nic.in/divisions/csurv/geac/annex-5.pdf.
- 7. Office of the Controller General of Patents, Design & Trademarks; Department of Industrial Policy & Promotion; Ministry of Commerce & Industry; Government of India. http://www.ipindia.nic.in/
- 8. National IPR Policy, Department of Industrial Policy & Promotion, Ministry of Commerce, GoI
- 9. Complete Reference to Intellectual Property Rights Laws. (2007). Snow White Publication Oct.
- 10. Wolt, J. D., Keese, P., Raybould, A., Fitzpatrick, J. W., Burachik, M., Gray, A., Wu, F. (2009). Problem Formulation in the Environmental Risk Assessment for Genetically Modified Plants. Transgenic Research, 19(3), 425-436. doi:10.1007/s11248-009-9321-9
- 11. Craig, W., Tepfer, M., Degrassi, G., & Ripandelli, D. (2008). An Overview of General Features of Risk Assessments of Genetically Modified Crops. Euphytica, 164(3), 853-880. doi:10.1007/s10681-007-9643-8

SEMESTER IV

FOOD & INDUSTRIAL BIOTECHNOLOGY (MBTT 401)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 401	Core	Food & Industrial Biotechnology	4	0	2	60	4+2=6

Objective: The course will provide a broad grounding in concepts techniques & issues involved in food products & their processing and also the objective of the course is to familiarize students with fermentation of antibiotic, alcohol and alcoholic beverages, fermentation of organic acid and amino acid.

Outcome: On completion of this course students will be able to understand - principle's involving food preservation. Via fermentation processes. Understand the principle's that make a food product safe for consumption. Understand the principles & current practices of processing techniques & the effect of processing parameter on product quality. Also after completion of this course student will be able to understand production of antibiotics, alcohol, organic acid and amino acid.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Bioreactor Technology	Bioreactor / Fermenter: Types & operation of Bioreactors, Introduction to Batch, Fed-batch and Continuous culture systems, s, Limitations of bioreactors, Stages of fermentation processes, Media design for fermentation processes, Solid substrate fermentation, advantages & disadvantages of solid substrate & liquid fermentations	12
Unit II	Downstream Processing	Importance of downstream processing and methods of downstream processing , centrifugation, filtration, precipitation, dialysis,, Chromatographic techniques- gel filtration, ion exchange chromatography and affinity chromatography, electrophoresis, capillary electrophoresis, Quality assurance techniques and its importance in marketing.	14
Unit III	Immobilized systems	Methods of enzyme immobilization: Adsorption, entrapment, Direct covalent linking, cross-linking. 3. Kinetics of immobilized enzymes, effect of solute partition & diffusion on the kinetics of immobilized enzymes, Enzyme electro-catalysis (Biosensors)	10
Unit IV	Food Biotechnology	Introduction, Elementary idea of canning and packing, Sterilization and pasteurization of food products, Probiotic, prebiotic and functional foods: Concepts and applications in food; Functional foods (oat products, milk and dairy products, sea food products); Biopreservatives; Production of alcoholic beverages and post fermentation processing of beer, wine, whiskey.	14
Unit V	Biotechnology industry and medicine	Production of important primary metabolites (Citric acid, Lactic acid), Production of Enzymes (proteases, amylases, lipases), Antibiotics, therapeutic applications, developing recombinant proteins with therapeutic & diagnostics applications, vaccine development-insulin, Singe Cell Protein.	10

The course would be taught through lectures, demonstrations and tutorials classes.

BOOKS RECOMMENDED:

- 1. Introduction to food processing- Jelen P.
- 2. Preservation of fruits and vegetables Girdhari lal, G. S. Siddappa, G. L. Tondon
- 3. A handbook on PHM of fruits and vegetables P. Jacob John
- 4. Technology of Cereal Kent N. L.
- 5. Food packaging Robert son G.L.
- 6. Principles of fermentation technology 2nd edition peter F. Standbury, Allan Whitaker
- 7. Microbial technology Vol-1 & 2 H. J. Peppler and D. Perlman
- 8. A.H. Patel "Industrial Microbiology" Macmillan.
- 9. Presscott, S.C. and Cecil G. Dunn, "Industrial Microbiology", Agrobios (India), 2005.
- 10. Cruger, Wulf and Anneliese Crueger, "Biotechnology: A Textbook of Industrial Microbiology", 2nd Edition, Panima Publishing, 2000.
- 11. C.F.A Bryce and EL.Mansi, Fermentation microbiology & Biotechnology, 1999.
- 12. K.G.Ramawat & Shaily Goyal, Comprehensive Biotechnology, 2009, S.Chand publications.
- 13. Industrial microbiology: An introduction. Mike J. Waites, Neil Morgan, John Rackey, Gary Higton, John S. Rockey.
- 14. Bioreactor recovery in bioprocess technology. Biotol Series
- 15. Principles of fermentation technology. P. F. Stanbury et al.
- 16. Gautam, N. C., Food Biotechnology in Comprehensive Biotechnology, Vol. 6., Shree i. publishers, New Delhi, 2007.
- 17. Gutierrez Lopez, G. F. et. al., Food Science and Food Biotechnology. CRC Publishers, Washington, 2003

PRACTICAL IN PHARMACEUTICAL BIOTECHNOLOGY (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Estimation of casein protein in milk.
- 2. Isolation of proteolytic enzymes from soil sample
- 3. Production of baker's yeast and inoculums preparation
- 4. Production of lactic acid, citric acid & ethanol
- 5. Preparation of standard plot of protein
- 6. Preparation of standard plot of sugar
- 7. Growth of microorganism and yield calculation

NANOBIOTECHNOLOGY (MBTT 402)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 402	Major	Nanobiotechnology	4	0	4	60	4+2=6

Objective:

To sensitize the students from a varied background about the biotechnological basics & culminates into modern day application of nanoscience in biotechnology.

Outcome:

After the end of this course, the student will able to develop a fundamental understanding of basic concept of Nanobiotechnology and its uses in the field of life sciences & medical. Student will be able to evaluate applications of various concepts & techniques of Nanobiotechnology to facilitate batter biotechnological advancement & innovations which can drive medicines.

Sr. No.	Topic	Detail of syllabus	Hrs.			
Unit I	Nanobiotechnology:	Nanobiotechnology & Nanomaterials: Background,	10			
	an overview	Preparation & characterization, Wet chemical processes,				
		Mechanical processes, Methods to synthesis Nanoparticles:				
		Bacteria, Yeast & Fungi in Nanoparticles synthesis				
Unit II	Biomaterials science	Third generation biomaterials (2000 onwards), Types of	10			
		biomaterials : Cellulose, Polyesters, Overview about				
		biopolymers				
		Chemistry of biodegradable solid polymers, Mode of				
		erosion, Molecular structure effects on hydrolytic				
		breakdown, Factors influencing Hydrolysis rate, Degradable				
		materials for biological recognition, Biomaterials in tissue				
		engineering, Micro/nanotechnology and biomaterials,				
		Nanofabrication and nanotechnology.				
Unit III	Fabrication and	Introduction, Nanoparticle synthesis techniques:	10			
	characterization of	Methodology and classification, Solid-state synthesis of				
	nanostructures	Nanoparticles, Vapour-phase systhesis of Nanoparticles,				
		Solution processing of nanoparticels, Sol-gel processing,				
		Solution precipitation, Water-oil microemulsion (reverse				
		micelle) method, Characterization of nanostructure, Thin				
		film deposition, Nanospheres, Atomic force microscope,				
		High-resolution imaging of biological and nanostrucutred				
		material, Fourier transform infrared spectroscopy,				
		Importance of infrared spectroscopy, Differential scanning				
		calorimetry.				
Unit IV	Nanotechnology in	Introduction, Application of micro-and nano-	10			
	biomedical	electromechanical devices to drug delivery converging				
	applications	technology using MEMS and NEMS biological sciences,				
		Implantable Devices, Reservoirs for controlled release,				
		Stents, Enteral (Mucosal) Delivery, Photodynamic therapy in				
		targeted drug Administration, Combination therapy,				
		Targeting specific cellular function-sensitive linkages,				

		Enhancement of PDT by the PS, Conjugation to carrier	
		molecules, Synthetic peptides, Polymers, Composite	
		targeting, Advances in the manufacturing, Types, and	
		applications of biosensors, Biosensor types, Biosensor	
		market-manufacturers, potential and drivers, Biomedical	
		Sensors and biosensors, Sensors in modern medicine,	
		Interaction of the sensor with its body tissue, Sensing	
		modalities, Quantum Dot technology in cancer treatment,	
		Quantum dots in early diagnosis of cancer, Advantages of	
		inorganic quantum dots over. Nanotechnology: A focus on	
		Advanced drug delivery system Nanoparticles as drug	
		carriers, Evading phagocytosis, Nanotechnology and	
		opportunities for agriculture and food systems, Genetically	
		modified organism, Use in gene expression and	
TT 14 T7	NT 10 0	histopathology, Pathogen detection.	40
Unit V	Nanomedicine and	Introduction, Drug delivery systems, Microcapsules and	10
	novel drug delivery	microspheres, The enhanced permeability and retention	
	systems	effect, PEG-protein conjugates, Polymer therapeutics,	
		Polymer-drug conjugates, Polymeric micelles, Liposomes,	
		Nanomaterials for drug delivery, Across the blood brains	
		barrier, Nanoparticles target cancer cells in vivo, Dendrimers	
		as Nanoparticulate drug carriers, Dendrimers as drug	
		carriers, Encapsulation of drugs in Dendrimers, Conjugation	
		of drug in Dendrimers, Cell-penetrating peptides in	
		combination with Nanoparticles for novel drug delivery,	
		Bioresponsive hydrogels, Bioresponsive hydrogels for drug	
		delivery, Application of materials in medicine:	
		Cardiovascular medical devices, Peripheral stents and stent	
		grafts, Orthopaedic applications, Orthopaedic biomaterials,	
		Orthopaedic biomaterials: Clinical Concerns, Orthopaedic	
		biomaterials: Wear, Orthopaedic biomaterials Corrosion	
Unit VI	Health and	Introduction, Engineered Nanomaterials of relevance to	10
	environmental	human health, Engineered Nanomaterials in the body,	
	impacts of	Routes of entry: Gastrointestinal tract, Skin, Lungs, Toxic	
	nanotechnology	mechanisms, Environmental implications of Nanoparticles,	
		Toxicological health effects caused by Nanoparticles,	
		Pulmonary inflammation induced by ultrafine particles,	
		Nanotechnology and ethical responsibility	

The course would be taught through lectures.

BOOKS RECOMMENDED:

Reference Book:

- 1. Nanobiotechnology, Subbiah Balaji
- 2. Nanotechnology: A Fundamental Approach, Dr. U. Kumar

- 3. Nanobiotechnology: Concepts, applications and perspectives, Chtistolf M. Niemeyer, Chand A. Mirkin, Wiley Publishers
- 4. Nanotechnology: A Gentle Introduction to next big idea, mark Ratner and Daniel Ratner
- 5. Nanotechnology: willian Illsey Atkinson, JAICO publishing house.
- 6. Bio Molecular Computation for Bio nanotechnology, Liu and Shimohara, Artech house-London.

PRACTICALS IN NANOBIOTECHNOLOGY (4 Hrs. per Week)

- 1. Synthesis of Nanoparticles from fungus / bacteria / plant (Demonstration)
- 2. Characterization of Nanoparticles through UV spectrophotometer

CLINICAL RESEARCH (MBTT 403A)

Course Code	Category	Course Name	L	T	Р	Total Hours	Credits (T+P)
MBTT 403A	Elective	Clinical Research	4	0	4	60	4+2=6

Objective:

The objective of the course is to impart the knowledge of clinical research which can be used for drug discovery and development.

Outcome:

At the end of the course the student will be capable to design, execute & inspects data of clinical research & trials.

Sr. No.	Topic	Detail of syllabus	Hrs.
Unit I	Introduction to Clinical Research	Introduction to Clinical Research, Terminologies and definition in Clinical Research, Origin and History of Clinical Research, Difference between Clinical Research and Clinical Practice, Types of Clinical Research, Phases of clinical research, Clinical Trials in India -The National Perspective, Post marketing surveillance Pharmaceutical Industry - Global and Indian Perspective	
Unit II	Pharmacology & Drug development	Introduction to Pharmacology, Concept of Essential Drugs, Routes of Drug Administration, Introduction to Drug Discovery and Development-Hurdles in Drug Development, Sources of Drugs Approaches to Drug Discovery, Pharmacovigilance, Factors affecting drug response	
Unit III	Preclinical Studies	Guidelines For Care And Use Of Laboratory Animals, Introduction To Preclinical Pharmacology, Introductory Talk on Animal studies: present status, Pre - Clinical Toxicity, Lab Animals in Pharmacology, Preclinical drug testing, Calculation of first human dose, Investigational New Drug Application, Clinical trials New Drug Application and Approval	
Unit IV	Guidelines and Regulations in Clinical Research	International Conference on Harmonization (ICH)-Brief history of ICH, Structure of ICH, ICH Harmonization ProcessGood Clinical Practice: ICH guidelines, Indian GCP guidelines (CDCSO guidelines), ICMR Guidelines - Ethical Guidelines for Biomedical Research on Human Subjects, Schedule Y, Institutional Review Board / Independent Ethics Committee Stakeholders in clinical research (Investigators, sponsors, CRO,SMO), Clinical Trial Protocol and Protocol Amendment(S), Investigator's Brochure, Essential Documents for the conduct of a Clinical Trial, Introduction of Clinical Trial Regulation, European Medicine Agency, Food and Drug Administration (US FDA), Drug and cosmetic act, GMP	10

Unit V	Clinical Development	Research question, Case report form, Informed Consent, Preparing data collection forms, Protocol writing, New drug discovery process- purpose, main steps involved in new drug discovery process, timelines of each steps, advantages and purposes of each steps, ethics in clinical research, unethical trials, Phase-I, II, III, IV trialsIntroduction and designing, - Principles of sampling, -Inclusion and exclusion criteria, - Methods of allocation and randomization, -Informed consent process in brief -Termination of trial, -Safety monitoring in clinical trials	10
UNIT VI	Clinical Regulatory requirements	Audit/ Inspection, Fraud and Misconduct in Clinical Trials Conflict of interest in Clinical research, Vaccine trails in children Bioavailability and Bioequivalence, How to fill an ADR reporting form and methods for causality assessment, Risk to benefit ratio bias and confounding factor, Uses of placebo	10
Unit VII	Marketing	Promotional inputs & development of Medico-Marketing, Prescribing Information (PI) Or Package Insert (PI), Publication issues	4
Unit VIII	Data management	Clinical data management (CDM): Introduction, CRF Design, Electronic Data Capture, Data Validation, Discrepancy Management, Clinical Data Coding, SAE Reconciliation, Archiving clinical data	4

The course would be taught through lectures, demonstrations and practical classes.

BOOKS RECOMMENDED

- 1. Basic and Clinical Pharmacology, Prentice hall, International, Katzung, B.G.
- 2. Remington Pharmaceutical Sciences, Lippincott, Williams and Wilkins
- 3. Drug interaction, Basic Bussiness Publ, Bombay, J.K. Mehra
- 4. Central Drugs Standard Control Organization. Good Clinical Practices-Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
- 5. International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice. E6; May 1996
- 6. Ethical Guidelines for Biomedical Research on Human Subjects 2000. Indian Council of Medical Research, New Delhi

PRACTICAL IN CLINICAL RESEARCH (4 hrs per week)

LIST OF EXPERIMENTS

- 1. Introduction to animal house
- 2. Handling of lab animals
- 3. Various routes of drug administration (lab animals)
- 4. Assessment of adverse drug reaction
- 5. Documentation for clinical research

REGENERATIVE MEDICINE (MBTT 403B)

Course Code	Category	Course Name	L	Т	Р	Total Hours	Credits (T+P)
MBTT 403B	Elective	Regenerative Medicine	4	0	4	60	4+2=6

Objective:

The course deals with the understanding of *in vitro* regeneration of organs, therapeutics and application of stem cells in medicine.

Outcome: After completing the course, the student should be able to

- describe different types of stem cells and their specific characteristics
- describe methods of applications to replace damaged or destroyed cells including tissue engineering
- account for regenerative medicine applications to human diseases
- account for and evaluate methods and techniques within the research field, their practical execution and application

Sr. No.	Topic	Detail of syllabus			
Unit I	Tissues	Introduction: Basic definition, Structural and organization of			
		tissues: Epithelial, connective, vascularity and angiogenesis.			
		Current scope of development and use in therapeutic and in-			
		vitro testing.			
Unit II	Cell Culture	Cell culture: Different cell types, progenitor cells and cell	15		
		differentiations, different kinds of matrix, cell-cell interaction.			
		Aspect of cells in culture, Bioreactors.			
Unit III	In vitro	Scaffolds & tissue engineering - Basic properties. In vitro	15		
	organogenesis	organogenesis -Engineering tissues for replacing bone, skin and			
		liver			
Unit IV	Stem Cells and	Stems cells: introduction, types (Adult & embryonic),	16		
	Wound healing	Properties, sources; haematopoiesis, Es cells, Blood from Es			
		cells. Basic wound healing. Cell migration, transport limits on			
		3D cultures. Application of FACs, flow cytometer, SNPs			
		analysis			

METHODOLOGY

The course would be taught through lectures, demonstrations and laboratory visit.

Books Recommended:

- 1. Principles of tissue engineering, Robert. P.Lanza, Robert Langer & William L. Chick, Academic press-2008
- 2. Tissue Engineering, B. Palsson, J.A. Hubbell, R.Plonsey & J.D. Bronzino, CRC- Taylor & Francis-2004
- 3. Tissue Engineering, Bernhard Palsson, Sangeeta Bhatia , , Pearson Prentice Hall, 2003
- 4. Culture of Cells for Tissue Engineering, Academic press,1997 3. Gordana Vunjak-Novakovic, R. Ian Freshney

DISSERTATION (MBTD 404)

Course Code	Course Name	Credit
MBTD 404	Dissertation	04

Registrar
Pravara Institute of Medical Sciences
(Deemed to be University)
Loni - 413736, Tal. Rahata
Dist. Ahmednagar (M.S. India)